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Abstract— The basis of poro-elastic modeling is a set of as-
sumptions about the nature of the porous media and the fluid that
fill its void spaces. The basic assumptions are: (1) the solid matrix
is homogenous, elastically deformable , and chemically inert with
respect to the fluid, (2) the fluid is single phase and Newtonian,
(3) the flow is in the laminar range, (4) there is an explicit
one-to-one relationship between porosity and permeability, and
(5) the fluid flow is governed by Darcy’s law. There are two
basic interpretations of Darcy’s law. The primary interpretation
in poro-elastic acoustics is to assume that Darcy’s law is a
restatement of Poisseuille’s law for porous media applications.
This restatement can be extended for bundles of capillary tubes,
and non-straight tubes. This gives rise to a linear equation that
predicts the acoustic dispersion, and attenuation for acoustic
waves in a porous media. Unfortunately, simulations of fluid
flow in Hele-Shaw cells suggest that for porous media consisting
of face-centered-cubically packed spheres the Poisseuille law
treatment is incorrect. Both the distribution of fluid velocity,
and viscous drag are incorrect.The second interpretation is to
assume that Darcy’s law is a macro-scale statistically derived
flow relationship derived from underlying micro-scale processes.
This methods gives rise to a model that inherently includes
flow geometry, and variations in permeability and porosity. The
statistical model allows for the definition of permeability such
that the tortuosity of the fluid paths are explicitly included in
both the permeability and the inertial effects. Additional fluid
dynamic phenomena, such as inertial effects, internal friction
and local accelerations among others can be included in the
calculation .

Two quantities of interest in understanding porous media flow
characteristics are the dispersivity of the porous media, and
the permeability. The dispersivity determines the spreading of
a definite fluid portion, and the permeability determines the
average flux of a fluid through the porous media. The Poisseuille
law treatment leads to models that can explain longitudinal
dispersion in porous media flows, but cannot explain transverse
dispersion. The macro-scale statistical model can explain both
phenomena at a cost of complexity. Thus the Poisseuille law
treatment will give rise to less dispersive estimates of the
momentum transfer, and thereby greater overall acoustic effects
caused by momentum transfer by the fluid.

The Poisseuille law treatment or the statistical treatment
of Darcy’s Law can employed within the consolidation model
framework to predict compressional phase speeds, shear phase
speeds, and attenuations. The predictions from either method
are similar. Both methods predict a non-linear dependence on
frequency, frequency dependent phase speeds, and two compres-
sional waves. The overall shape of the sound speed dispersion
relationship for each of the fluid flow models is similar, although
a significant difference is obvious. The most significant difference

in the predictions from the two interpretations is the velocity
difference between high-frequency and low-frequency phases
speeds is larger by roughly a factor of two for the Poisseuille
law interpretation. This discrepancy has implications for the
interpretation of acoustical inversions based on poro-elastic
models.

I. INTRODUCTION

Poro-elastic models for acoustic propagation in sediments
arose out of the familiar consolidation models for predicting
transient fluid flows in soils [1][2]. The Biot-Stoll [3][4] poro-
elastic model treats wave propagation in a porous elastic
media using macroscopic continuum mechanics. The fluid
saturating the porous media is assumed to interact with the
porous through a combination of viscous drag and inertia
interaction. The viscous interaction is treated by a Darcy’s
law formulation modified for oscillating flow in an otherwise
Poiseuille dynamical range [5]. The assumption of fluid flow
in straight constant cross section conduits is the single most
critical assumption in defining the relationship between fre-
quency and attenuation. The assumption leads to a frequency
dependent permeability that increases as the square root of the
frequency [6]. The model assumes that only three parameters
are needed to specify the hydrodynamic flow, the porosity
η, the permeability k, and an added mass coefficient. The
Biot-Stoll model predicts the existence of two compressional
waves, and a single shear wave. The assumption of Poiseuille
flow in the void structure of the porous media determines
the relationship of compressional phase speed to frequency as
well as controlling the relationship between attenuation and
frequency.

In this paper some of the effects of assuming a non-
Poiseuille flow will be elucidated. The Biot-Stoll [3] model is
used as the starting point. This forumulation give the essential
strucuture of the classic Biot fluid dynamic treatment. The
fluid dynamic treatment in the model is modified to include
inertial effects with the explicit assumption that the maximum
flow length before a branch occurs is on the order of the
mean particle size of the matrix. That is, Darcy’s law is not a
restatement of Poiseuille’s law for a porous media.
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II. EXTENDED POISEUILLE TREATMENT

The theoretic hydrodynamic aspects of a single homogenous
fluid in a isotropic nonreactive saturated medium form a
critical foundation for the Biot model. When the pore space is
in the form of a network of tubes, with distances between the
nodes greater than the transverse dimensions of the tubes, it
seems reasonable to treat the system as an equivalent Poiseuille
tube network. The theoretical approach of replacing the porous
media by an ’equivalent’ bundle of capillary tubes was taken
by Biot as the basis of his fluid dynamic analysis [5]. That is,
the Darcy Law relationship

∇P = −μ

k
u (1)

where μ is the dynamic viscosity of the fluid, k is the
permeability, u is the macroscopic velocity and P is the
pressure, is assumed to refer to an exactly linear flow in a
precise geometry in the same manner as the Poiseuille Law.
The momentum balance is assumed to be consistent with
steady unidirectional flow with the pressure gradient parallel
to the flow direction, and thus, for a porous media the conduits
are parallel to the pressure gradient. The assumption of Darcy’s
Law as a statement of Poiseuille flow for a porous media
allows the development of frequency dependent viscosity [5].
The extension assumes that the velocity vector has the same
direction everywhere, and is independent of distance in the
flow direction,thus the material derivative in the momentum
equation is identically zero. This is achieved by assuming
the flow occurs in constant geometry conduits. Solutions of
this equation, assuming that Darcy’s Law is the relationship
between pressure and velocity and pressure gradient, give rise
to a term that is often interpretable as frequency dependent
viscosity. The dynamic viscosity η of the fluid is replaced by
ηF (κ), where F (κ) describes the deviation from Poiseuille
flow friction as a function of a frequency parameter κ. For
low frequencies the limit is 1, and for high frequencies it is
proportional to the square root of the frequency and is 45
degrees out of phase with respect to the velocity. The resultant
model predicts the existence of three forms of body waves, two
compressional waves, and one shear wave. The existence of the
slow wave is not dependent on the details of the porous media
treatment, but the attenuation is dependent on the treatment as
well as the velocity difference between the low frequency limit
and the high frequency limit for all wave types. The critical
assumption is that flow in a porous media occurs through
straight, smooth conduits. Analog evidence [7] suggests that
deviations from the smooth, straight conduit when the pressure
gradient is not parallel to the flow path leads rapidly to lower
flow efficiencies, and non-Poiseuille flow.

III. STATISTICAL DARCY’S LAW

Rather than assume that flow in a porous media occurs
along well defined paths that are parallel to the pressure
gradient, assume a model where the momentum equation is
a statement of the average state of a representative volume.
In simple porous media the individual pores can be treated as

volumes connected between constrictions in the flow path. The
distance between constrictions is commonly on the order as the
transverse dimensions of the pore [8]. The fluid flow in such a
media is then characterized by divergences and convergences
with length scales on the order of an individual pore. For
this porous media model, [9] used a Stokes flow solution
to demonstrate the difference between a Poiseuille flow and
the flow encountered in a porous media. Three significant
differences were discovered, (a) the maximum vorticity and
shear stress is not always found at the pore wall (Poiseuille
flow has maxima of both quantities at the the wall),(b) there is
no one to one relationships between point values of potential
gradient and flow velocity as required by Poiseuille flow, and
(c) the velocity deviates strongly from the Poiseuille parabolic
profile. Such flow behavior suggests that the Poiseuille flow
assumption made by [10] is invalid, unless the porous media
has a specific capillary flow geometry.

For a non-Poiseuille flow, the [10] extension to oscillating
flows is unavailable. However, the flow is being forced by an
acoustic oscillation that requires time-dependency in the flow
equations. For mean porous media flow in which the only
significant inertial term is the local time dependency of the
flow we use a formulation found in [11]. That is

∇P = −μ

k
u − ρf

T

∂u

∂t
(2)

where ρf is the fluid density, and T is the tortuosity of
the porous media. This equation is recognizable as Darcy’s
law with the addition of term relating local acceleration to
the momentum balance. The form of this equation is similar
to the equation solved by Biot [5], the difference between
the two equations lies : 1) in the constants, and 2) in the
assumption of the flow paths. In this formulation permeability
is proportional to tortuosity ([8], [11]). The permeability is
the product of porosity, terms relating to the physical structure
of the porous media, and the tortuosity. The second term in
the equation becomes significant when the Strouhal number
(the ratio of vibration speed to flow velocity) becomes greater
than 1. Since acoustic pressures are small (relative to the
overburden pressure) the velocities excited by the acoustic
waves are small, thus the vibrational speed (frequency times
characteristic length) is much larger than the fluid velocity.
Tortuosity is defined as

T = (
l

le
)2 (3)

where l is the distance between two points, and le is the
length of the flow path connecting the points. This specifi-
cation is limited to the case of laminar flow of a Newtonian
fluid through a porous media. The media consists of a network
of channels in which the flow occurs. The channels are then
stream tubes fixed in space, that is streamlines in the porous
media have a fixed geometry. In this formulation a straight flow
tube would have a tortuosity of 1, with more convoluted paths
having a smaller value. The permeability is maximized when
the flow tubes are straight, and decreases as the flow path



increases. Values for tortuosities [8] for various geometries
suggest a value around 0.4 would be a lower limit.

IV. COMPARITIVE CALCULATION

The methods outlined in sections 2 and 3 will now be used
to calculate the phase speed, and qualtity factor as a function
of frequency. The example is taken from , and the inputs are
given in table 1. The Biot-Stoll model uses an extra mass of
0.25 in the calculation. In the advective diffusive approach the
effective method of creating extra mass is to set the tortuosity
such that the factor 1/T. The method gives rise to a term that
yeilds the extra mass needed.

Each of the flow models was used to calculate the poro-
elastic results for frequencies from 10 Hz to 240 kHz. The
results are presented in figures 1 through 3. Each figure con-
sists of the phase speed of the wave type, and the specificate
attenuation of the wave type for each of the two fluid flow
models.

Figure 1 shows the phase speeds, and specificate attenua-
tions for the Biot-Stoll flow model, and the advective-diffusive
flow model for the fast compressional wave. Each of the
predictions show a number of common features. First the phase
speed is minimal at low frequencies rising quickly in the low
kHz range, and reaching a maximal in the low hundreds of
kHz. Second the shape of the specificate attenuation curves
is similar for both flow models. The differences can be char-
acterized into five categories: (1) the difference between the
low frequency phase speed and high frequency phase speed is
twice as large for the Biot-Stoll flow model, (2) the range over
which phase speed increases rapidly with frequency is larger
in the Biot-Stoll flow model, (3) the specificate attenuation
is higher in the Biot-Stoll model at all frequencies, (4) the
rate of decay in the specificate attenuation after the peak
specificate attenuation is much smaller when using the Biot-
Stoll model, and (5) the maximum slope of either the phase
speed dispersion curve or specific attenuation is larger for the
Poiseuille based flow.

Figure 2 shows the phase speeds, and specificate attenua-
tions for the Biot-Stoll flow model, and the advective-diffusive
flow model for the slow compressional wave. The points of
commonality, and difference are similar for the slow and fast
compressive waves. The difference between the low and high
frequency phase speeds is roughly a factor of two , with the
greater difference arising for the Biot-Stoll flow regime. The
frequency interval over which the phase speed rises rapidly
with frequency is larger for the Biot-Stoll flow regime. The
quailty factors are almost equal to frequencies near 2 kHz,
but for higher frequencies the specificate attenuation of the
Biot-Stoll flow regime decays less quickly than the advective-
diffusive flow regime.

Figure 3 shows the phase speeds, and specificate attenua-
tions for the Biot-Stoll flow model, and the advective-diffusive
flow model for the shear wave. The shear wave differences are
very similar to the differences observed in the compressional
waves with one significant difference. The magnitude of the
differences are reduced due too the relative dominance of the
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Fig. 1. Plot of wave speed versus frequency , and specific attenuation versus
frequency for fast compresssional wave using Biot-Stoll and Biot-advective
diffusion poro-elastic model.
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Fig. 2. Plot of wave speed versus frequency , and specific attenuation versus
frequency for slow compresssional wave using Biot-Stoll and Biot-advective
diffusion poro-elastic model.

elastic shear terms to the poro-elastic shear terms. The specific
attenuation, and phase speed of the Poiseuille based model
is higher than the advective-diffusive based model except
for a small interval between 3 and 10 kHz when the phase
speed, and the specific attenuation are higher for the advective-
diffusive base model. This is the also the only region in which
the gradient of these properties is higher for the advective-
diffusive based model.

V. DISCUSSION AND CONCLUSIONS

The comparison of the poro-elastic model predictions using
the Poiseuille and advective diffusive models reveal :

1) Both flow regimes allow for the existence of slow and
fast compressional waves. This is implicit in the formulation
of the Biot consolidation model [2] which stipulates that the
fluid flow is defined relatively to the matrix.
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Fig. 3. Plot of wave speed versus frequency , and specific attenuation versus
frequency for shear wave using Biot-Stoll and Biot-advective diffusion poro-
elastic model.

TABLE I

PHYSICAL PROPERTIES OF SEDIMENTS.

Physical Property Symbols units Value

Fluid Bulk Modulus kf (Nm−2) 2.3 · 109

Frame Bulk Modulus kb (Nm−2) 2.67 · 108

Grain Bulk Modulus kr (Nm−2) 3.6 · 1010

Frame Shear Modulus μb (Nm−2) 1.0 · 108

Porosity η 0.40

Viscosity μ kgm−1sec−1 1.0 · 103

Permeability k (m2) 1.0 · 10−10

Fluid density ρf (kg/m3) 1.0 · 103

Density ρ (kg/m3) 1.99 · 103

2) The same basic shape of phase velocity dispersion curve,
and specific attenuation dispersion curve is predicted by both
flow models.

3) The difference between the high frequency phase speed
and the low frequency phase speed is approximately twice
as large for the Poiseuille based flow model poro-elastic
predictions.

4) The specific attenuation is generally higher for the
Poiseuille base flow model poro-elastic predictions.

5.) The region where the phase speeds exhibit the greatest
frequency dependency is larger for the Poiseuille based flow
model poro-elastic predictions.

6.) The slopes of the phase speed dispersion are larger for
Poiseuille based poro-elatic models.

The physical mechanism for the differences arises for the
dispersion characteristics of the assumed fluid flow. Poiseuille
flow models in porous media gives rise to models which
cannot account for transverse dispersion of mass, energy and
momentum[8][11][9]. This means that the acoustic energy is
more coupled with the fluid motion in the matrix than would
be expected. This means for a complex valued wave for energy

would be moved into both elements of the complex wave
giving rise to the paradox of higher specific attenuation.
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